Abstract

Nanofiber-expanded human umbilical cord blood-derived CD34+ cell therapy is under consideration for treating peripheral and cardiac ischemia. However, the therapeutic efficacy of nanofiber-expanded human umbilical cord blood-derived (NEHUCB) CD34+ cell therapy for wound healing and its mechanisms are yet to be established. Using an excision wound model in NOD/SCID mice, we show herein that NEHUCB-CD34+ cells home to the wound site and significantly accelerate the wound-healing process compared to vehicle-treated control. Histological analysis reveals that accelerated wound closure is associated with the re-epithelialization and increased angiogenesis. Additionally, NEHUCB-CD34+ cell-therapy decreases expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and NOS2A in the wound bed, and concomitantly increases expression of IL-10 compared to vehicle-treated control. These findings were recapitulated in vitro using primary dermal fibroblasts and NEHUCB-CD34+ cells. Moreover, NEHUCB-CD34+ cells attenuate NF-κB activation and nuclear translocation in dermal fibroblasts through enhanced secretion of IL-10, which is known to bind to NF-κB and suppress transcriptional activity. Collectively, these data provide novel mechanistic evidence of NEHUCB-CD34+ cell-mediated accelerated wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call