Abstract

A mechanically robust polyacrylonitrile-based nanofibrous hydrogel yarn is fabricated by using a modified electrospinning setup in combination with chemical modification processes. The as-prepared hydrogel yarn possesses a uniaxially aligned nanofiber microarchitecture and supports a rapid, pH-dependent expansion/contraction response within a few seconds. Embryonic cardiomyocytes-seeded hydrogel yarn improves the sarcomere organization and mimics the cardiomyocyte bundles in the native myocardium, which sustains spontaneous cardiomyocyte pumping behaviors. The nanofibrous hydrogel yarn has several advantages over traditional bulk hydrogel scaffolds in terms of robust biomechanics, anisotropic aligned architecture, and superior pH response behaviors. Our nanofibrous hydrogel yarn holds the potential to be developed into novel linear and biological microactuators for various biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call