Abstract

Hybrid soft materials composed of CdSe-CdS nanorods or "quantum rods" (QRs) and the fluorescent 2,3-didecyloxyanthracene (DDOA) low molecular weight organogelator are obtained through self-assembly. Spectroscopy, microscopy, and rheology studies show that the QRs and DDOA coassemble, thereby stabilizing the organogels. Depending on the QR load and excitation wavelength, single nanofibers (NFs) of the hybrid gel display either sharp polarized red luminescence (under green excitation), or dual perpendicularly polarized blue and red emissions (under UV excitation). Transmission electron microscopy, microspectroscopy, and quantum rod orientation microscopy (QROM) reveal that QRs align along the organogel NFs with order parameters reaching 76% and 87%. This paves the way for obtaining surfaces of QR/NF assemblies yielding sharp red linearly polarized emission. In addition, this work demonstrates that QRs can be used more generally to probe nanostructured soft materials, even nonemissive ones. QROM allows to establish maps of the orientation of single QRs dispersed onto or within a gel network by measuring the polarization of the emission of the individual QRs. As occurs within this work in which QRs and NFs interact, the orientation of each QR reveals information on the underlying nanostructure (such as surface striation, bundle formation, and helicity).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.