Abstract

Bulk colloidal interactions are dictated by the physical properties of individual particles dispersed in solution. However, for many applications it remains challenging to predict system-level colloidal behavior. Comprehensive characterization typically requires disparate techniques that can observe correlations between microscale particle–surface interactions and physical properties of the particles. In this work, we present a unique tin dioxide (SnO2) nanofiber-based total internal reflection microscopy (TIRM) method to efficiently characterize colloidal behavior as a function of particle-level properties in complex fluidic conditions. We develop and model the device physics to understand the physical underpinnings of the raw device data and then use these models to design proof-of-concept experiments to verify device function. Statistical trends in the data collected from a nominal system of 80 nm gold nanoparticles correspond to theoretical predictions as we vary key design parameters such as particle...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call