Abstract

Nanostructured double ferromagnetic tunnel junctions (MTJs) are indispensable for investigation of spin-dependent single-electron transport at low temperature. A new fabrication process that enables us to reduce the size of MTJs down to nanometer scale by using the side edge of a patterned film were developed. The multilayers of MTJ partially replaced by thick Al2O3/Cu double layer were prepared by using electron beam lithography and lift-off, then Pt film was vacuum-evaporated onto the side edge of Al2O3/Cu film, which masked MTJ during following Ar ion milling. As a result, the double MTJs with the dimension of 10 nm £ 10 mm were formed beneath the Pt film. The large tunnel magnetoresistive ratio of 35% and symmetrical I–V characteristics were obtained at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.