Abstract

Both techniques and applications of nanofabrication have been explored in the field of periodic dielectric nanostructures. These periodic dielectric structures are expected to exhibit interesting properties in both fields of physics and engineering. These artificial nanostructures are named because photons demonstrate similar behavior in these structures as electrons in natural semiconductor crystals. In order to construct these crystals in the optical regime, suitable nanofabrication techniques have to be developed and demonstrated, including high resolution electron beam lithography and anisotropic chemically assisted ion beam etching. In this work, both 2D and 3D photonic crystals are fabricated and characterized in the near-infrared range. In the first part of this thesis, exploration of resolution limit of nanofabrication will be demonstrated and discussed. 15nm structures with 30nm period dot arrays and 20nm line width with 40mn period gratings are presented. Along with high resolution lithography, anisotropic pattern transfer is also developed. These powerful fabrication techniques enable us to miniaturize the dimension of both electronic and optical devices into the nanometer regime. In the second and third part of this thesis, detailed experiments and characterization of 2D and 3D photonic crystals are discussed. A brief introduction and a theoretical simulation are also presented. In the second part, computer generated form-birefringent nanostructures are first discussed and their performance demonstrated to agree well with design using rigorous coupled wave analysis (RCWA). In-plane 2D photonic crystals used as beam splitting micropolarizers are introduced and fabricated. High extinction ratios (>820:1) between transmitted TE and TM modes are measured. These in-plane photonic crystals are the first working devices using the idea of 2D photonic crystals. Three-dimensional artificial photonic crystals with a complete 3D bandgap represent a more attractive idea. In the third part of this thesis, we challenge the nanofabrication limits encountered when fabricating a 3D photonic crystal. The first three-dimensional photonic crystals with a forbidden photonic bandgap lying in the near infrared region of the electromagnetic spectrum, 1.1 μm

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.