Abstract

AbstractOur study of biological systems increasingly depends on our ability to dynamically and quantitatively measure the molecular processes with high sensitivity, speed, flexibility, multiplexity, throughput, and reproducibility, usually within the context of a complex biological and chemical mixture of tiny amount. To address these major challenges, plasmon-resonant nanostructure biomolecule hybrids (nano-bio hybrids), so-called plasmonic nanobiosensors, are being developed and viewed as one key breakthrough area for real-time and parallelized biomedical analysis with high sensitivity and selectivity. Hereby, we present a solution of integrated plasmonic system by synergizing three core techniques: (i) nanoplasmonics that manipulates electromagnetic radiation (light) at dielectric-metal interfaces by tuning properties of nanomaterials, (ii) nanofabrication and controlled synthesis of nanomaterials containing noble metals (e.g., Au, Ag, Pt, and Cu), and (iii) bioconjugates techniques that modify surface of nanomaterials with various bioprobes (e.g., antibodies, enzymes, aptamers, and molecular imprint polymers). Applications of these plasmonic nano-bio hybrid structures are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.