Abstract
As an effort to increase the corrosion resistance of conventional monolayer Zn-Ni alloy coating, the multilayer Zn-Ni alloy coating have been done electrolytically on mild steel (MS), using gelatin and glycerol as additives. Multilayered, or more correctly composition modulated multilayer alloy (CMMA) coatings have been developed using square current pulse. Successive layers of alloys, in nanometric scale having alternately changing composition were fabricated by making the cathode current to cycle between two values, called cyclic cathode current densities (CCCD’s). The coatings having different configuration, in terms of composition and thicknesses of individual layers were developed and their corrosion performances were evaluated by electrochemical methods. The corrosion rate (CR)’s were found to decrease drastically with progressive increase in number of layers (up to 300 layers), and then increased. The coating configurations have been optimized for best protection against corrosion. The CMMA Zn-Ni coating having 300 layers was found to be about 37 times more corrosion resistant than corresponding monolayer alloy, developed from same bath for same time. High protection efficacy of the coatings were attributed to alternate layers of alloys having different surface structure and composition, supported by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) study, respectively. Optimization procedure has been explained, and results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Protection of Metals and Physical Chemistry of Surfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.