Abstract

Preconcentration of the target compound is a critical step that ensures the accuracy of the subsequent chemical analysis. In this work, we present a straightforward yet effective liquid-liquid extraction approach based on surface nanodroplets (i.e., nanoextraction) for offline analysis of highly diluted sample solutions. The extraction and sample collection were streamlined in a 3-m microcapillary tube. The concentration of the target analyte in surface nanodroplets was significantly increased compared to the concentration in the sample solution, reaching several orders of magnitude. A limit of detection (LOD) was decreased by a factor of ∼103 for an organic model compound in Fourier-transform infrared spectroscopy (FTIR) measurements and ∼105 for a model fluorescent dye in fluorescence detection. The quantitative analysis of the organic compound was also achieved in a wide concentration region from 10−3 M to 10−4 M. The total volume of surface nanodroplets can be manipulated to further enhance extraction efficiency, according to the principle that governs droplet formation by solvent exchange. Additionally, our method exhibited significantly improved sensitivity compared to traditional dispersive liquid-liquid microextraction (DLLME). The LOD of the fluorescent dye and the organic model compound obtained with DLLME was 3 orders of magnitude and 20 times higher than the LOD achieved through nanoextraction approach. The nanoextraction developed in this work can be applied to preconcentrate multi-compounds from river water samples, without clear interference from each other. This can further extend its applicability for the detection and quantification of target analytes in complex aqueous samples by common analytical instruments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.