Abstract

AbstractMesenchymal stem cells (MSCs) can be used for tumor‐specific delivery of small molecular weight anticancer drugs by using nanoparticle‐encapsulated forms of the drugs. Current approaches to incorporate nanoparticles in MSCs rely on nonspecific endocytosis of nanoparticles or their conjugation to the cell surface via endogenous amines and thiols. These methods result in sub‐optimal drug loading, which hinders the widespread application of MSCs as drug carriers. An advanced nanoengineering strategy is reported here that involves generation of MSCs expressing azide functional groups on their surface and conjugation of dibenzyl cyclooctyne‐functionalized nanoparticles to the azide groups using copper‐free click chemistry. This novel strategy significantly improves the payload capacity of MSCs (≈48 pg of paclitaxel (PTX) per cell) relative to that reported previously (<1–20 pg per cell), without affecting their native phenotype. In vivo, the nanoengineered MSCs significantly inhibit tumor growth (p < 0.05) and improve survival (p < 0.0001) compared to free or nanoparticle encapsulated PTX and Abraxane in an orthotopic ovarian tumor model. In summary, the nanoengineering strategy reported here allows for improved delivery and anticancer efficacy of conventional chemotherapeutic agents using MSCs as drug carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.