Abstract

Although nanoengineering of electrodes opens up the way to the development of solid oxide fuel cells (SOFCs) with improved performance, the practical implementation of such advances in cells suitable for widespread use remains a challenge. Here, the demonstration of large-area, commercially relevant SOFCs with two nanoengineered electrodes that display excellent performance is reported. The self-assembled nanocomposite La0.6Sr0.4CoO3-δ and Co3O4 is strategically designed and deposited into the well-interconnected Ce0.9Gd0.1O2-δ backbone as a cathode to enable an ultra-large electrochemically active region. The nanometer-scale Ce0.8Gd0.2O2-δ is deposited into a conventional Ni/yttria-stabilized zirconia (YSZ) anode to provide more active oxygen exchange kinetics and electronic conductivity compared to YSZ. The resulting nanoengineered cell with an effective size of 4 cm × 4 cm delivers a remarkable power output of 19.2 W per single cell at 0.6 V and 750 °C. These advancements have potential to facilitate the future development of high-performance SOFCs at a large scale by nanoengineering of electrodes and are expected to pave the way for the commercialization of this technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.