Abstract

Liquid–vapour phase change is a useful and efficient process to transfer energy in nature, as well as in numerous domestic and industrial applications. Relatively recent advances in altering surface chemistry, and in the formation of micro- and nanoscale features on surfaces, have led to exciting improvements in liquid–vapour phase-change performance and better understanding of the underlying science. In this Review, we present an overview of the surface, thermal and material science to illustrate how new materials and designs can improve boiling and condensation. There are many parallels between boiling and condensation, such as nucleation of a phase and its departure from a surface; however, the particular set of challenges associated with each phenomenon results in different material designs used in different manners. We also discuss alternative techniques, such as introducing heterogeneous surface chemistry or direct real-time manipulation of the phase-change process, which can offer further control of heat-transfer processes. Finally, long-term robustness is essential to ensure reliability and feasibility but remains a key challenge. Recent works in boiling and condensation have achieved unprecedented performance and revealed new mechanistic insights that will aid in material design. In this Review, we focus on nanoengineered materials, with emphasis on further improving the heat-transfer performance and long-term robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.