Abstract

Vaccine coverage is severely limited in developing countries due to inefficient protection of vaccine functionality as well as lack of patient compliance to receive the additional booster doses. Thus, there is an urgent need to design a thermostable vaccine delivery platform that also enables release of the bolus after predetermined time. Here, the formation of injectable and light-activatable polybubbles for vaccine delivery is reported. In vitro studies show that polybubbles enable delayed burst release, irrespective of cargo types, namely small molecule and antigen. The extracorporeal activation of polybubbles is achieved by incorporating near-infrared (NIR)-sensitive gold nanorods (AuNRs). Interestingly, light-activatable polybubbles can be used for on-demand burst release of cargo. In vitro, ex vivo, and in vivo studies demonstrate successful activation of AuNR-loaded polybubbles. Overall, the light-activatable polybubble technology can be used for on-demand delivery of various therapeutics including small molecule drugs, immunologically relevant protein, peptide antigens, and nucleic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.