Abstract

Isothiocyanates (ITCs) have low stability in aqueous conditions, reducing their bioavailability when used as food ingredients. Therefore, the aim of this work was to increase the stability of the ITCs present in extracts of Bimi® edible parts by nanoencapsulation using cauliflower-derived plasma membrane vesicles. The bioactivity of these nanoencapsulates was evaluated in a HepG2 hepatocyte cell line in a model for low-grade chronic inflammation. The vesicles showed a higher capacity of retention in the in vitro gastrointestinal digestion for 3,3-diindolylmethane (DIM), indole-3-carbinol (I3C) and sulforaphane (SFN). Furthermore, Transmission Electron Microscopy (TEM) analysis of the vesicles revealed a decreased size under acidic pH and a release of their cargo after the intestinal digestion. The HepG2 experiments revealed differences in metabolism under the condition of chronic inflammation. The cauliflower-derived plasma membrane vesicles are able to enhance the stability of ITCs through the in vitro gastrointestinal digestion, improving their bioaccesibility and potential bioavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.