Abstract

Nanotechnology is a new frontier of this century that finds applications in various fields of science with important effects on our life and on the environment. Nanoencapsulation of bioactive compounds is a promising topic of nanotechnology. The excessive use of synthetic compounds with antifungal activity has led to the selection of resistant fungal species. In this context, the use of plant essential oils (EOs) with antifungal activity encapsulated in ecofriendly nanosystems could be a new and winning strategy to overcome the problem. We prepared nanoencapsules containing the essential oils of Origanum vulgare (OV) and Thymus capitatus (TC) by the nanoprecipitation method. The colloidal suspensions were characterized for size, polydispersity index (PDI), zeta potential, efficiency of encapsulation (EE) and loading capacity (LC). Finally, the essential oil nanosuspensions were assayed against a panel of fourteen fungal strains belonging to the Ascomycota and Basidiomycota phyla. Our results show that the nanosystems containing thyme and oregano essential oils were active against various fungal strains from natural environments and materials. In particular, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were two to four times lower than the pure essential oils. The aqueous, ecofriendly essential oil nanosuspensions with broad-spectrum antifungal activity could be a valid alternative to synthetic products, finding interesting applications in the agri-food and environmental fields.

Highlights

  • Fungi are ubiquitous microorganisms that can colonize several natural environments, equipped with enzymatic machinery enabling the degradation of various types of materials and matrices [1]

  • The samples subjected to this study had chemical profiles quite typical of the Origanum vulgare thymol and carvacrol chemotype and the Thymus capitatus carvacrol chemotype of essential oils

  • The common feature of these two oils was to have three main components which alone covered more than 80% of the whole composition

Read more

Summary

Introduction

Fungi are ubiquitous microorganisms that can colonize several natural environments, equipped with enzymatic machinery enabling the degradation of various types of materials and matrices [1]. The fungi of the genus Cladosporium are well known as phytopathogenic microorganisms able to infect different kinds of plants [4]. Penicillium citrinum is recognized mainly as a citrus fruit pathogen, but occasionally it occurs in tropical spices and cereals [5]. Other fungi, such as members of the genera Geotrichum, Mucor and Fusarium, can be isolated from various foods where they can release dangerous mycotoxins [6,7]. It is necessary to implement a series of precautions for their control and inhibition on various kinds of surfaces (especially in an indoor environment) and in food processing

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call