Abstract

Investigating new drugs or formulations that target Alzheimer disease (AD) is critical for advancing therapeutic interventions. Therefore, this study aimed to assess the effectiveness of nanoencapsulated curcumin (NC Curc) in alleviating memory impairment, oxidative stress, and neuroinflammation in a validated AD model. Male Wistar rats were given bilateral intracerebroventricular injections of either saline or streptozotocin (STZ) (3 mg/3 µL/site) to establish the AD model (day 0). On day 22, daily oral administrations of curcumin (6 mg/kg), NC Curc (6 mg/kg), or a vehicle (unloaded NC) were initiated and continued for 14 days. NC Curc significantly reversed memory deficits in object recognition and inhibitory avoidance tests induced by STZ. Both formulations of curcumin attenuated elevated acetylcholinesterase activity caused by STZ. Importantly, NC Curc alone effectively mitigated STZ-induced oxidative stress. Additionally, NC Curc treatment normalized GFAP levels, suggesting a potential reduction in neuroinflammation in STZ-treated rats. Our findings indicate that NC Curc improves memory in an AD rat model, highlighting its enhanced therapeutic effects compared to unencapsulated curcumin. This research significantly contributes to understanding the therapeutic and neurorestorative potential of NC Curc in AD, particularly in reversing pathophysiological changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call