Abstract
The chemical composition of cypress, lavender, lemon eucalyptus, and tea tree oils has been investigated using gas chromatography/mass spectrometry (GC/MS). These oils were tested for larvicidal activity against Culex pipiens alongside their nanoemulsions (NEs) and conventional emulsifiable concentrates (ECs). Oil-in-water (O/W) NEs preparation was based on a high-energy ultra-sonication technique. The effect of independent variables of preparation on the different outputs was studied using the response surface method to obtain the optimum preparation technique. The droplet sizes of prepared NEs were significantly different (71.67, 104.55, 211.07, and 70.67 for cypress, lavender, lemon eucalyptus, and Tea tree NEs, respectively). The zeta potentials of NEs were recorded to have a high negatively charge (−28.4, −22.2, −23.6, and − 22.3 mV for cypress, lavender, lemon eucalyptus, and tea tree NEs, respectively). The results showed that the tea tree oil has the most significant effect with LC50 = 60.02 and 57.10 mg/L after 24 and 48 h of exposure, respectively. In comparison, cypress oil proved the lowest toxicity with LC50 values of 202.24 and 180.70 mg/L after 24 and 48 h, respectively. However, lavender oil does not show any effect against larvae at tested concentrations. In addition, pure oil exhibited the lowest larvicidal activity. However, the EC of all tested insecticides slightly improved the toxic action against the larvae. While the NEs showed significantly high toxicity compared to the EO and EC. An in vivo assessment of acetylcholine esterase (AChE), adenosine triphosphatase (ATPase), and gamma-aminobutyric acid transaminase (GABA-T) revealed that the NEs exhibited higher activity than the pure oils and ECs. This work describes these oils with potential use against C. pipiens larvae as eco-friendly products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.