Abstract

The Aedes aegypti mosquito is a vector of severe diseases with high morbidity and mortality rates. The most commonly used industrial larvicides have considerable toxicity for non-target organisms. This study aimed to develop and evaluate liquid and solid carrier systems to use pentyl cinnamate (PC), derived from natural sources, to control Ae. aegypti larvae. The liquid systems consisting of nanoemulsions with different lecithins systems were obtained and evaluated for stability over 30 days. Microparticles (MPs) were obtained by the spray drying of the nanoemulsions using maltodextrin as an adjuvant. Thermal, NMR and FTIR analysis indicated the presence of PC in microparticles. Indeed, the best nanoemulsion system was also the most stable and generated the highest MP yield. The PC larvicidal activity was increased in the PC nanoemulsion system. Therefore, it was possible to develop, characterize and obtain PC carrier systems active against Ae. aegypti larvae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.