Abstract

AbstractWe study the operation of a gated resonant tunnel diode placed in an oscillator tank circuit for application as a pulse generator. The gated diode is realized by a metal gate placed 30nm away from a resonant tunnelling double barrier heterostructure, where the gate is used to control the current of the tunnelling diode. A large signal model is developed for the gated resonant tunnelling diode and we use this model to study the operation of the pulsed oscillator. It is demonstrated that the gate can be used to switch the oscillations on and off and to tune the oscillation frequency via changes in the internal capacitances in the gated diode. A modulation in the oscillation frequency of 7.6 GHz around 220 GHz is obtained for a change in the gate bias from 0.2 to −0.6V. Short pulses applied to the gate results in only four periods of oscillation with a broad power spectrum. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.