Abstract

Silicon nanowire field effect transistors (NWFETs) are low noise, low power, ultrasensitive biosensors that are highly amenable to integration. However, using NWFETs to achieve direct protein detection in physiological buffers such as blood serum remains difficult due to Debye screening, nonspecific binding, and stringent functionalization requirements. In this work, we performed an indirect sandwich immunoassay in serum combined with exponential DNA amplification and pH measurement by ultrasensitive NWFET sensors. Measurements of model cytokine interleukin-2 concentrations from <20 fM to >200 pM were demonstrated, surpassing the conventional NWFET urease-based readout. Our approach paves way for future development of universal, highly sensitive, miniaturized, and integrated nanoelectronic devices that can be applied to a wide variety of analytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.