Abstract

A nanoelectronic implementation of Boolean logic circuits is described where logic functionality is realized through charge interactions between metallic dots self-assembled on the surface of a double-barrier resonant tunneling diode (RTD) structure. The primitive computational cell in this architecture consists of a number of dots with nearest neighbor (resistive) interconnections. Specific logic functionality is provided by appropriate rectifying connections between cells. We show how basic logic gates, leading to combinational and sequential circuits, can be realized in this architecture. Additionally, architectural issues including directionality, fault tolerance, and power dissipation are discussed. Estimates based on the current-voltage characteristics of RTD's and the capacitance and resistance values of the interdot connections indicate that static power dissipation as small as 0.1 nW/gate and switching delay as small as a few picoseconds can be expected. We also present a strategy for fabricating/synthesizing such systems using chemical self-organizing/self-assembly phenomena. The proposed synthesis procedure utilizes several chemical self-assembly techniques which have been demonstrated recently, including self-assembly of uniform arrays of close-packed metallic dots with nanometer diameters, controlled resistive linking of nearest neighbor dots with conjugated organic molecules and organic rectifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.