Abstract

We present a novel method for the quantitative analysis of mixtures of semivolatile chemical compounds. For the first time, thermal desorption is integrated directly with nanoelectromechanical infrared spectroscopy (NEMS-IR-TD). In this new technique, an analyte mixture is deposited via nebulization on the surface of a NEMS sensor and subsequently desorbed using heating under vacuum. The desorption process is monitored in situ via infrared spectroscopy and thermogravimetric analysis. The resulting spectro-temporal maps allow for selective identification and analysis of the mixture. In addition, the corresponding thermogravimetric data allow for analysis of the desorption dynamics of the mixture components. As a demonstration, caffeine and theobromine were selectively identified and quantified from a mixture with a detection limit of less than 6 pg (about 30 fmol). With its exceptional sensitivity, NEMS-IR-TD allows for the analysis of low abundance and complex analytes with potential applications ranging from environmental sensing to life sciences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call