Abstract
The continuous and inappropriate use of traditionally used antimicrobial agents has caused the rise of multidrug-resistant (MDR) bacterial strains and the mutation of microorganisms in the field of dentistry. Therefore, various nanoparticles have been developed to combat resistant pathogens. Titanium dioxide (TiO2) nanoparticles have been attractive antimicrobial agents because of their chemical stability, non-toxicity, and inexpensive precursors. Therefore, TiO2-based nanodispersions were explored by preparing them with well-known antimicrobial agents, such as hypochlorous acid (HOCl), to enhance the antimicrobial effect. In this study, sol-gel-based TiO2 NPs-HOCl nanodispersions were synthesized and characterized. The antimicrobial effect was assessed by a microdilution assay using S. mutans, S. aureus, E. faecalis, and C. albicans strains by incubating different concentrations of the nanodispersions. To evaluate the cytotoxic effects, stem cells from the apical papilla (SCAPs) were inoculated and evaluated using the MTT assay. The nanodispersion exhibited an enhanced antimicrobial effect, with almost no cytotoxicity. The HOCl-based nanodispersion exhibited a greater antimicrobial effect and high stability. Thus, it can be used as a promising antimicrobial agent for the treatment of various dental pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.