Abstract

Cytochrome P450 3A4 (CYP3A4) metabolizes a wide range of drugs and toxins. Interactions of CYP3A4 with ligands are difficult to predict due to promiscuity and conformational flexibility. To better understand CYP3A4 conformational responses to ligands we use hydrogen deuterium exchange mass spectrometry (HDX-MS) to investigate the effect of ligands on nanodisc-embedded CYP3A4. For a subset of CYP3A4-ligand complexes, differences in the low-frequency modes derived by principal component analyses of molecular dynamics trajectories mirrored the HDX-MS results. The effects of ligands are distributed to flexible elements of CYP3A4 between stretches of secondary structure. The largest effects occur in the F- and G-helices, where most ligands increase the flexibility of the F-helix and connecting loops and decrease the flexibility of the C-term of the G-helix. Most ligands affect the E-F-G, CD and HI regions of the protein. Ligand-dependent differences are observed in the A"-A' loop, BC region, E-helix, K-β1 region, proximal loop, and C-term loop. Correlated HDX responses were observed in the CD region and the C-term of the G-helix that were most pronounced for Type II ligands. Collectively, the HDX and molecular dynamics results suggest that CYP3A4 accommodates diverse binding partners by propagating local backbone fluctuations from the binding site onto the flexible regions of the enzyme via long-range interactions that are differentially modulated by ligands. In contrast to the paradigm wherein ligands decrease protein dynamics at their binding site, a wide range of ligands modestly increase CYP3A4 dynamics throughout the protein including effects remote from the active site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.