Abstract

Simultaneous detection of multiply and singly phosphorylated peptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is challenging because of suppression effects during ionization. In oder to overcome this problem, this study presents a new approach to improve the detection of phosphopeptides by stepwise enrichment using polyarginine-coated (PA-coated) and titanium dioxide-coated (TiO(2)-coated) nanodiamonds for fractionation of multiply and singly phosphorylated peptides prior to on-probe MALDI MS analysis. The feasibility of this approach was demonstrated using synthetic peptides containing different numbers of phosphate groups, tryptic digests of α-casein, β-casein, and complex protein mixtures. The high specificity of the approach is shown in its effective enrichment and fractionation of phosphopeptides from the digest of β-casein and bovine serum albumin at a molar ratio as low as 1 : 1000, which out-performs the commercial Fe(3+)-IMAC and TiO(2) isolation kits. It offers a simple and effective alternative for the fractionation and identification of multiply and singly phosphorylated peptides by MALDI MS and allows for deduction of more information from limited starting materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call