Abstract
Sulfonated fluorenyl-containing polyaryletherketones (SFPAEKs) were synthesized through a postsulfonation approach under a mild reaction condition. The composite proton exchange membranes based on SFPAEKs and various amounts of the modified nanocrystalline cellulose (NCC) were prepared by solution casting method. The existence of the multiple hydroxyl and sulfonic acid groups on the chemically modified nanocrystalline cellulose was supposed to benefit the formation of hydrogen-bond network and proton-conducting channels, which would improve the proton conducting ability of the composite membranes. Furthermore, the properties, such as mechanical properties, thermal stability, water uptake, swelling ratio and so on, were thoroughly investigated. In comparison to the pristine SFPAEK, the composite membranes containing a “performance enhanced” NCC component presented the higher proton conductivity and better mechanical properties. It was found that the proton conductivity of the composite membrane with 4wt% of NCC could reach 0.234Scm−1 at 100°C, and this value was higher than that of most of the reported membranes. The results showed that the modified nanocrystalline cellulose reinforced SFPAEK composite membrane would be promising for the application as middle-temperature proton exchange membranes in fuel cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.