Abstract
Nano-Cu modified Cu (nano-Cu/Cu) and nano-Cu modified graphite (nano-Cu/C) electrodes were prepared by depositing a thin layer of copper nanoparticles on a Cu wire or graphite electrode. Chronoamperometric and cyclic voltammetry techniques were applied to deposit the nanoparticles. The effects of Cu2+ concentration, deposition time, number of scan cycles, and scan rate were studied to determine the optimum conditions of the experiment. The applications of both electrodes in the COD analysis were performed using glucose and glycine as the models. The voltammetry of a mixture solution of glucose (mg/L) and glycine (mg/L) in 0.075 M NaOH solution showed an oxidation peak at +0.68 V vs. Ag/AgCl. Good stability of this peak current was shown with relative standard deviations lower than 3% for 10 measurements. Amperometric determination of COD at this potential showed excellent linearities at both nano-Cu/Cu and nano-Cu/C electrodes (R2 = 0.997) as well as good precision and accuracy with estimated detection limits of around ∼9 mgO/L for both the developed electrodes. Validation using the conventional COD measurements showed that the measurements achieved the average values of 92.58 and 87.86%, respectively, for nano-Cu/Cu and nano-Cu/C electrodes. Furthermore, comparison with the theoretical COD value achieved 94.90 and 89.87%, respectively, for nano-Cu/Cu and nano-Cu/C electrodes. The results indicated that both electrodes are suitable for practical application in COD determination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.