Abstract

The recently discovered Cu46Zr33.5Hf13.5Al7 (at.%) bulk metallic glass (BMG) presents the highest glass-forming ability (GFA) among all known copper-based alloys, with a record-breaking critical casting thickness (or diameter) of 28.5 mm. At present, much remains to be explored about this new BMG that holds exceptional promise for engineering applications. Here, we report our study on the crystallization behavior of this new BMG, using isochronal and isothermal differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). With the calorimetric data, we determine the apparent activation energy of crystallization, the Avrami exponent, and the lower branch of the isothermal time–temperature–transformation (TTT) diagram. With XRD and TEM, we identify primary and secondary crystal phases utilizing samples crystallized to different degrees within the calorimeter. We also estimate the number density, nucleation rate, and growth rate of the primary crystals through TEM image analysis. Our results reveal that the crystallization in this BMG has a high activation energy of ≈360 kJ/mole and that the primary crystallization of this BMG produces a high number density (≈1021 m−3 at 475 °C) of slowly growing (growth rate < 0.5 nm/s at 475 °C) Cu10(Zr,Hf)7 nanocrystals dispersed in the glassy matrix, while the second crystallization event further produces a new phase, Cu(Zr,Hf)2. The results help us to understand the GFA and thermal stability of this new BMG and provide important guidance for its future engineering applications, including its usage as a precursor to glass–crystal composite or bulk nanocrystalline structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.