Abstract

The nanocrystallization behaviour of Zr70Cu20Ni10 metallic glass during isothermal annealing is studied by employing a Monte Carlo simulation incorporating with a modified Ising model and a Q-state Potts model. Based on the simulated microstructure and differential scanning calorimetry curves, we find that the low crystal-amorphous interface energy of Ni plays an important role in the nanocrystallization of primary Zr2Ni. It is found that when T<TImax (where TImax is the temperature with maximum nucleation rate), the increase of temperature results in a larger growth rate and a much finer microstructure for the primary Zr2Ni, which accords with the microstructure evolution in ``flash annealing''. Finally, the Zr2Ni/Zr2Cu interface energy σG contributes to the pinning effect of the primary nano-sized Zr2Ni grains in the later formed normal Zr2Cu grains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call