Abstract

Nanocrystalline ZnO quantum dots (QD) with a diameter of 10 nm was synthesized and tested toward eight different toxic industrial chemicals (i.e., nitrogen dioxide (NO2), hydrogen sulfide (H2S), ammonia (NH3), carbon monoxide (CO), methane (CH4), ethanol (C2H5OH), acetone (CH3)2CO, and toluene (C6H5CH3)) with a broad concentration range at five different operating temperatures. Systemic studies allow to determine the kinetics of gas sensing as well as the competing reactions of analytes with sensing material and adsorbed oxygen. ZnO QD showed an excellent sensing performance toward NO2 and H2S in comparison to other target analytes. The selectivity can be further improved by controlling the operating temperature (i.e., higher selectivity toward NO2 and H2S were achieved at 300 °C and 450 °C, respectively). Moreover, the optimal temperature was found to be analyte dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.