Abstract

Abstract In this paper a nanocrystalline (nc) zinc oxide based hybrid gas sensor with signal conditioning ASIC has been reported for sensing and transmitting the information about methane concentration from the underground coalmine environment. A low power, low temperature nc zinc oxide MEMS based gas sensor has been designed, fabricated and tested for the purpose with a power consumption of ~70mW and sensitivity of 76.6 % at 1.0% methane concentration at a sensor operating temperature of 150°C. For transmitting the output of the gas sensor, a voltage controlled oscillator (VCO) chip integrated with a low noise amplifier has been fabricated in 0.3 5 μm CMOS technology to convert the voltage output of the gas sensor to desirable frequency. The power consumption of the chip has been obtained to be around 3mW. The amplifier gain is set suitably ~13 to apply the desirable control voltage (~1.2V-3.2V)to the VCO. The noise of the amplifier has 1/2 been obtained to be around 2μV/Hz . The output frequency of the VCO varies from 20kHz to 100kHz for the change in methane concentration from 0 to 1%. The output of the VCO chip can be applied as a modulating signal to a commercially available transceiver, which transmits the signal to the control room.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.