Abstract

Recently 1:12 magnets of Sm-(Fe,V) have shown promising coercivities and the potential to be alternative rare-earth-lean permanent magnets. In this work, we investigated the effects of partial substitution of Cu, Mo and Ti for V in the magnets prepared by hot compaction and hot deformation of mechanically milled powders. The microstructure of the Sm-Fe-(V,Cu) and Sm-Fe-(V,Ti) hot-deformed magnets consisted in fine grains with sizes between 50 and 150 nm. The Sm-Fe-(V,Cu) magnet showed the best performance with μ0Hc=0.96 T, μ0Mr=0.49 T, (BH)max=42kJm−3and TC=362∘C. Atom probe tomography of this magnet revealed the presence of a thin Sm17.5Fe71.5V8Cu3intergranular phase of 3-6 nm surrounding the 1:12 nanograins. The addition of a small amount of Cu, not only improved the magnetic properties but also hindered the grain growth during hot deformation. Micromagnetic simulations of the magnetization reversal agreed with the experimental values of coercivity. The presence of the intergranular phase reduces the number of grains that switch simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.