Abstract

Nanocrystalline materials with the composition of (Cu0.5Ni0.5)yFe3−yO4 and a spinel structure were synthesized by the auto-combustion sol–gel method. The materials were characterized by powder X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and N2 physisorption. A decrease in the unit cell parameter and increase in the crystallite size with a decrease in the copper and nickel content in ferrites were evidenced. Mössbauer analysis determined that iron ions are in the 3+ states in all compositions. Transmission electron microscopy showed that synthesized ferrite materials consisted of nanoparticles with narrow size distributions. The catalytic properties of synthesized ferrites were studied in the reaction of ethyl acetate oxidation and methanol decomposition. The conversion of ethyl acetate and CO2 selectivity increased with temperature, and this effect was most pronounced for (Cu0.5Ni0.5)0.5Fe2.5O4, for which the main part of the particles possessed sizes below 10 nm, and the mean diameter was calculated to be 4.3 nm. The catalytic activity in the reaction of methanol decomposition was the highest for (Cu0.5Ni0.5)0.25Fe2.75O4, and it decreased with the increase in Cu and Ni content in the samples. The analysis of the samples after the catalytic test indicated significant reduction transformations within the catalysts. Under the reaction medium, the spinel phase decomposed through the formation of Hägg carbide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.