Abstract

The Ag-Fe-Sn alloy powders prepared by mechanical alloying technique have been studied as anode material for lithium-ion batteries. The half-cell tests with lithium counter electrode revealed that a suitable substitution of Fe for Ag led to a significant improvement of the cycling performance of the electrodes. Among these electrodes, the electrode was found to be capable of keeping a rechargeable capacity of about 280 mAh/g over 300 cycles, which was better than that of the Fe-free electrode. Typically, the structural changes of the electrode during Li insertion and/or extraction were characterized using the combined techniques involving X-ray diffraction, high resolution transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray spectrometry. It is considered that the electrochemical properties of these electrodes are associated with their microstructure and morphology, such as the distribution of intermetallic compound in Sn matrix, the ratio as well as the presence of inactive Fe. © 2004 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.