Abstract

AlGaN/GaN HEMTs are poised to become the technology of choice in RF and power electronics applications where high operating frequencies and high breakdown voltages are required. The alloyed contacting scheme utilized in the formation of the source and drain contacts of these devices affects the conduction of electrons through the 2DEG from the moment of ohmic contact formation onward to operation in the field. Analysis of the ohmic contacts of as-fabricated and electrically stressed AlGaN/GaN HEMTs, via chemical deprocessing and Scanning Electron Microscopy, indicates the presence of cracks oriented along the [11-20] directions, which nucleate at metal inclusions present under the alloyed ohmic source/drain contact metal. Cracks which form at the edges of these contact regions can extend into the channel region. It appears that electrical biasing induces additional growth in the longest cracks present within the channel regions of these devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.