Abstract

With the increasing global consumption of secondary batteries, the cost of lithium-ion batteries (LIBs) will gradually become a problem. Compared with LIBs, sodium-ion batteries (SIBs) have natural advantages, such as the higher abundance of sodium in the earth’s crust and lower cost. SIBs have a similar working principle to LIBs, based on sodium/lithium ions moving between the cathode and anode. The cathode plays an important role in the performance of SIBs. Among the cathode materials of SIBs, phosphate-based cathodes have been widely studied for their good electrochemical performance and stability. However, there are still some problems that limit their wide practical application, such as unsatisfactory rate performance, low energy density and poor cycle stability. Nanosizing is one of the common modification strategies used to solve the above problems. It not only improves the chemical kinetics of cathode materials but also regulates their thermodynamic properties. This review discusses the influence of nanosizing on the phosphate cathode material and what shapes can be designed to improve performance, and provides a reference for the development of SIBs in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.