Abstract

There is considerable interest in developing solid electrolytes for rechargeable lithium batteries as they have the potential to increase both energy density due to incorporation of a lithium metal anode and safety of batteries due to the fact that they are nonflammable. Block copolymers with a mechanically hard non-conducting block and a soft ion-conducting block provide an avenue for obtaining highly conducting rigid solids. In this study we add surface-modified TiO2 nanoparticles to a mixture of polystyrene-block-poly(ethylene oxide) and bis(trifluoromethane)sulfonimide lithium salt. The presence of BF4− moieties on the surface of the particles was essential for obtaining macroscopically homogeneous electrolytes; macrophase separation was observed with the same nanoparticles with surfaces covered with oleic acid. The stability of these composite electrolytes against lithium metal electrodes was tested in symmetric lithium-composite electrolyte-lithium cells. The surprising result was that electrolytes with 24 wt% nanoparticles exhibited optimum stability; the amount of charge passed before dendrite formation observed in the optimized composite electrolyte was a factor of 4.7 larger than that of the neat block copolymer electrolyte. Both tensile and shear moduli of the electrolytes were non-monotonic functions of particle concentration with peaks in the vicinity of 17 to 20 wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.