Abstract

The nanocomposites of polyethylene with Fe3O4 nanoparticles (NPs) were synthesized via surface-initiated ring-opening metathesis polymerization (SI-ROMP). First, the surfaces of pristine Fe3O4 NPs were functionalized with (5-nicyclo[2.2.1]hept-2-enyl)ethyl]triethoxylsilane. The as-obtained Fe3O4 NPs functionalized with norbornene were used to mediate the ROMP of cyclooctene (COE). By controlling the mass ratios of COE to the surface-functionalized Fe3O4 NPs, the polycyclooctene-grafted Fe3O4 NPs (denoted PCOE-g-Fe3O4 NPs) were obtained with variable contents of Fe3O4 NPs. Finally, these PCOE-g-Fe3O4 NPs were hydrogenated into the corresponding polyethylene-grafted Fe3O4 NPs (PE-g-Fe3O4 NPs). The nanocomposites of PE with Fe3O4 NPs were successfully synthesized as evidenced by the morphologies that the Fe3O4 NPs were well dispersed in PE matrix at the scale of nanometer. The nanocomposites displayed the mechanical properties superior to plain PE. More importantly, the nanocomposites were capable of displaying superparamagnetic, thermally-induced shape memory and photothermal properties. Furthermore, the photothermal behavior can be utilized to trigger the shape memory properties in a non-contact fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.