Abstract

This article describes the fabrication of nanosized paramagnetic drug carriers via the assembly of a pH-responsive hydrophilic block copolymer poly(polyethylene glycol methyl ether methacrylate)-b-poly(methacrylic acid-co-trimethyl ammonium bromide propyl methacrylate) (PPMT) and polyoxometalate K13[Gd(β2-SiW11O39)2] (GdSiW11) through electrostatic interaction. Owing to the hydrophilicity, large molecular weight, and high content of the GdSiW11 cluster bearing in the nanocomposites, the organic-inorganic nanocomposite exhibited an impressive longitudinal relaxivity as a contrast agent for magnetic resonance imaging (MRI). The surplus negative charges from the polyoxometalate cluster in the polymer nanocomposites facilitated the capture of the anti-tumor drug doxorubicin (DOX). The DOX-loaded nanocomposites were stable under the physiological environment, whereas a responsive release of DOX was achieved at pH values similar to the tumor microenvironment due to the regulation of the polyoxometalate and carboxyl groups. The DOX-loaded PPMT2-GdSiW11 nanocomposites were observed to enrich effectively at tumor sites through MRI after intravenous injection. Furthermore, the DOX-loaded composites manifested enhanced in vivo anti-tumor therapeutic efficacy and sustainable circulation time of more than 5 h, which were favourable for imaging measurement. With the advantages of the designed composite system, the present experiments propose a strategy for developing a new multiple imaging-drug delivery-local therapy platform for synergistic diagnosis and therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.