Abstract

This work describes the synthesis of new, environmentally friendly, robust and biocompatible organic–inorganic hybrid materials based on fatty acid methyl ester-functionalised silica. The hydrosilylation reaction was used to covalently anchor 10-undecenoic methyl ester to a cyclic and acyclic backbone based on methylsiloxane repeating units. These as-synthesised amphiphilic precursors exhibit a self-assembling ability as shown by the formation of nanoobjects evidenced by fluorescence experiments, transmission electronic microscopy (TEM) and dynamic light scattering (DLS) analyses. Spherical nanocomposites featuring unprecedented flexibility, hydrophobicity and improved hydrolytic and thermal properties were built using sol–gel condensation of tetraethoxysilane (TEOS) controlled by these new self-assembling nanobuilding blocks. The textural characteristics and the morphology of these composite materials were dependent on the type of catalyst (acidic or basic) and the nature of the solvent (polar or apolar) used during the sol–gel polymerisation. This strategy opens new opportunities for advanced applications in various fields of nanochemistry and biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call