Abstract
Thermoelectric figure of merit (ZT) depends on three material properties; electrical conductivity, thermal conductivity, and Seebeck coefficient. Maximizing ZT simply requires that electrical conductivity and Seebeck coefficient be high to reduce Joule heating and to increase energy conversion efficiency while thermal conductivity needs to be low to maintain temperature gradient across a thermoelectric material. Unfortunately these three material properties are closely correlated each other in homogeneous bulk semiconductors. Recent demonstrations that employ various semiconductor materials tuned at the nanometer-scale (nanomaterials) have shown great promise in advancing thermoelectrics. Among a wide range of nanomaterials, we focus on "nanocomposites" in which semimetallic nanostructures are epitaxially embedded in a ternary compound semiconductor matrix to attempt tuning the three material properties independently. We demonstrated co-deposition of erbium monoantimonide (ErSb) and In<sub>1-x</sub>Ga<sub>x</sub>Sb or InSb<sub>1-y</sub>Asy ternary alloy to form nanometer-scale semimetallic ErSb structures within these ternary alloys "nanocomposite" using low-pressure metal organic chemical vapor deposition. The grown nanocomposites were structurally and thermoelectrically analyzed to assess their potential for advanced thermoelectric power generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.