Abstract

Rate-controlled sintering and spark plasma sintering are considered the most promising methods to produce dense nanoctructured ceramics. Refractory compounds are used to demonstrate the application of methods for controlling the densification rate and nonlinear heating and loading conditions to produce dense nanocomposites with 30–70 nm grains. The mechanical and tribological properties of ceramics with grains from 50 to 500 nm in size are compared. The effect of increase in the mechanical (5–15%) and tribological (to 50%) characteristics of nanocomposites consolidated by rate-controlled sintering and modified nonlinear spark plasma sintering is studied. Nanocomposites based on refractory nitrides and borides are regarded as promising materials for creating a new generation of cutting tools, as well as wear-resistant ceramics for wide application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.