Abstract

In this study, a novel thermally actuated triple-shape memory polymer (triple-SMP) based on poly(l-lactide) (PLA)/poly(ε-caprolactone) (PCL)/graphene nanoplatelets (GNps) nanocomposite was prepared by facile solution mixing method and the design of which was based on two well-separated melting temperatures. In order to improve the dispersion of GNps in the matrix, functionalization reactions were carried out on the GNPs surface. Functionalization was confirmed by various techniques including FTIR, Raman and TGA analysis. TEM micrographs revealed an exfoliated morphology for the functionalized GNps (FGNps) and a homogenous dispersion in the matrix. The crystallinity behaviour of nanocomposites was investigated by DSC and variable temperature XRD (VT-XRD) analysis and an increase in crystallinity was observed. Dynamic mechanical analysis (DMA) showed that the presence of FGNps improves the fixity and recovery ratios because of increase in crystallinity and thermal conductivity. The best shape memory behavior was obtained for PLA50/PCL50/FGNp 1.5 nanocomposite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.