Abstract

In the present work, nanocomposite of polymerized ionic liquid (PIL), poly (1-vinyl-3-ethyl imidazolium) bromide, modified graphene nanosheet (PIL-Gr) was prepared. The PIL-Gr nanosheet composite was evaluated using scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Then, a robust and effective sensing strategy based on the nanocomposite for cytochrome c (Cyt c) immobilization on basal plane graphite (BPG) electrode surface was proposed. Direct electrochemistry and electrocatalysis of immobilized Cyt c were investigated in detail. The cyclic voltammogram results indicated that the PIL-Gr nanocomposite film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of nitric oxide (NO). The fabricated biosensor exhibited a fast response and a good electrochemical activity for NO with comparable liner range and low detection limit. The low apparent Michaelis–Menten constant \( (K_{\text{m}}^{\text{app}}) \) indicated the affinity of PIL-Gr and Cyt c. Moreover, the modified electrode displayed a rapid response to NO and possessed good stability and reproducibility. Based on the nanocomposite, a third-generation reagentless biosensor could be constructed for the determination of NO. The present work broadens the applications of graphene and ionic liquid in biosensor field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call