Abstract

Deployment of proton exchange membrane fuel cells (PEMFCs) are of vital importance for the mitigation of fossil energy shortage and environment pollution. A significant amount of Pt on cathode is highly needed to accelerate the process of sluggish oxygen reduction reaction (ORR) and maintains a stable long-term performance. During ORR, the yield of undesirable hydrogen peroxide through a two-electron pathway not only decreases outer power but also weakens the long-term stability. Herein, Pt-prussian blue (PB) composite, featuring around structure, is firstly proposed and facilely fabricated via electrostatic self-assembly strategy. Pt1PB0.25/C shows 50% higher activity than commercial Pt/C, rationally ascribed to modulated electronic structure and higher selectivity towards four-electron pathway. Moreover, in contrast with the striking 38% loss in mass activity for Pt/C after accelerated degradation tests (ADTs), Pt1PB0.25/C shows only a 15% decrease possibly due to the elimination of hydrogen oxide and the anchor interaction between Pt and PB. The employment of PB with a synergy role paves an efficient way for the fabrication of brand-new Pt-based catalysts with high activity and stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call