Abstract

Significant improvements in the thermomechanical and surface chemical properties of nanocomposite nanofibers of poly( d, l-lactic-co-glycolic acid) (PLGA) were achieved by adding 2-dimensional nanoscale fillers of graphene oxide (GO) nanosheets to PLGA nanofibers. The significant enhancement of storage and loss moduli of the PLGA/GO (2 wt.%.) nanocomposite nanofibers were presumably caused by enhanced chemical bonding between the oxygenated functional groups of the highly dispersible GO nanosheets and the hydroxyl groups of the polymer chains in the PLGA matrix, resulting in strong interfacial interactions between the nanofiller and polymer matrix. Enhanced hydrophilicity of nanocomposite nanofibers caused by embedded GO nanosheets also allowed for good biocompatibility of neuronal cells, resulting in enhanced cell proliferation and viability. Our findings indicate that nanocomposite biopolymer nanofibers embedded with GO nanosheets are attractive candidates for use in biomedical applications such as scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.