Abstract

The physical chemistry of surface phenomena in polymers is an important issue when studying the interaction of polymers with solid surfaces. This is due to the fact that most of the modern polymer materials are heterogeneous systems with highly developed phase separation surfaces. An example of such materials can be reinforced plastic, filled thermoplastics, reinforced rubber, paint coatings, etc. Polymer adsorption at the boundary of the phase separation process in solids plays an important role in the reinforcing effect of fillers, adhesion, gluing and obtaining composite materials with high strength properties. Compositions based on polyvinyl alcohol (PVA) modified with carbon nanotubes (CNTs) can be used as an interesting and informative system for studying the structure and properties of polymer nanocomposites, especially in a highly oriented state. PVA has one of the simplest chemical structure among the polymers, containing a functional (hydroxyl) group capable of participating in interphase interactions. In turn, carbon nanotubes with unique strength properties are currently products of industrial production, which makes it possible to control and modify their properties. To prove the possibility of creating new composite materials with improved strength characteristics, the mechanisms of interaction between PVA and CNTs are studied by modeling the adsorption processes of a polymer fragment on the outer surface of single-layer carbon nanotubes of different chirality, performed within the framework of the modern DFT calculation method. The main adsorption characteristics of the process and the features of the electron energy structure of the resulting composite systems are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call