Abstract

Bioactive nanocomposites may become an important material if both the carrier matrix and the nanoparticle are biocompatible, like is known for zinc oxide and lactones. The fabrication of such nanocomposite made of polycaprolactone nanofibres with embedded nanoparticles is studied during laser ablation in liquid monomer and polymer solution. The in situ conjugation of zinc oxide nanoparticles with e-caprolactone followed by zinc-initiated polymerization was studied. Indication for covalent bonding between the zinc oxide nanoparticles and the carboxylic units of the oligomers is observed. In addition to the study of the intended nanohybrid formation, possible formation of unintended byproducts was investigated. Laser-induced pyrolysis of solvent was studied for nanosecond, picosecond, and femtosecond laser pulse durations at the same energy input, where all pulse durations caused unintended solvent modification and picosecond pulses were most efficient for nanoparticle production. Heading towards fabrication of macroscopic bioactive fibre pads, the lasergenerated zinc oxide polymer nanocomposite have been successfully spun into nanofibres using electrospinning. Polymer-embedding is demonstrated at the example of macroscopic nanocomposite fibre pads with various bio-relevant nanoparticles fabricated by laser ablation of magnesium, iron, and tantalum in polycaprolactone solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.