Abstract

Two active electrochromic materials, vacancy-doped tungsten oxide (WO(3-x)) nanocrystals and amorphous niobium oxide (NbOx) glass are arranged into a mesostructured architecture. In a strategy applicable across electrochemical applications, the critical dimensions and interfacial connections in the nanocomposite are designed to optimize pathways for electrochemical charging and discharging. The result is an unprecedented optical range for modulation of visible and near-infrared solar radiation with rapid switching kinetics that indicate the WO(3-x) nanocrystal framework effectively pumps charge out of the normally sluggish NbOx glass. The material is durable for at least 2000 electrochemical cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.