Abstract

Bovine serum albumin (BSA) and BSA-glucose conjugates (GBSAⅠ and GBSAⅠI) with different extent of glycation were complexed with curcumin (CUR). The formation mechanism of BSA/GBSA-CUR complexes and the effect of glycation on their physicochemical properties were investigated. Fluorescence quenching and FTIR analysis indicated that the BSA/GBSA–CUR nanocomplexes were formed mainly by hydrophobic interactions. XRD analysis demonstrated that CUR was present in an amorphous state in the nanocomplexes. BSA with a greater extent of glycation (BSA < GBSAⅠ<GBSAⅠI) displayed a higher binding affinity for CUR. The highest CUR encapsulation efficiency (86.77%) and loading capacity (7.81 mg/g) were obtained in the GBSAⅠI-CUR nanocomplex. The zeta-potential varied from −17.45 to −27.65 mV, depending on the extent of glycation. Furthermore, the physicochemical stability of BSA/GBSA-CUR nanocomplexes increased with the increasing extent of glycation of BSA. Thus, the obtained GBSAⅠI have the potential to become new delivery carriers for encapsulating hydrophobic food components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.